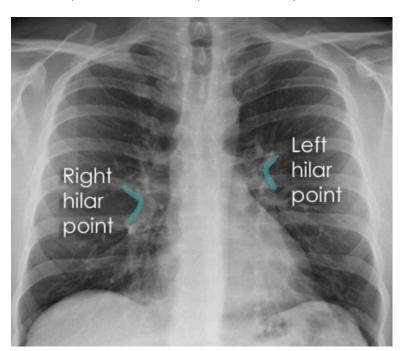
QUIZ 30th Sept 2020 (answers below)

1.	What is the utility of a lateral CXR?
2.	What is the hilar point?
3.	What is your differential diagnoses list for a floppy baby?
4.	How does congenital adrenal hyperplasia present?
5.	Describe and interpret the following blood gas analysis.

↓ pH	6.955		1	7 350		7.450	1
The second secon		manual La					300
† pCO ₂	90.2	mmHg	[45.0	
† pO ₂	273	mmHg	[75.0	-	105	
Oximetry Values							
ctHb	143	g/L	1	130	-	180	
sO ₂	98.0	%	1	95.0	L	99.0	3
† FCOHb	2.3	%	1	0.0	_	1.5	
FMetHb	1.1	%]	0.0	-	1.5	
Electrolyte Values		Ŷ.					
↓ cNa⁺	128	mmol/L	1	137	-	146	
† cK⁺	8.0	mmol/L]	3.5	-	5.0	
cCa²⁺	1.25	mmol/L	[1.15	-	1.30	
↓ cCl ⁻	90	mmol/L	1	98	_	106	
Metabolite Values							,
† cGlu	21.7	mmol/L	1	3.0	-	7.8	
† cLac	8.3	mmol/L	1	0.0	-	2.2	
† cCrea	632	µmol/L	1	60	-	120	
Calculated Values			, L 1				
ABE _C	-16.0	mmol/L]		-		
cHCO ₃ -(P)c	19.0	mmol/L	1		-		

Value(s) above reference range Value(s) below reference range Calculated value(s)

QUIZ answers 30th Sept 2020


1. What is the utility of a lateral CXR?

- *i)* Localise a lesion ont he frontal CXR
- ii) Clarify lobar collapse/consolidation
- iii) Look at the retrosternal or retrocardiac space
- iv) Confirm the presence of encysted fluid in the oblique fissure

2. What is the hilar point?

The hilar point is formed by the outer margins of the superior pulmonary vein and the descending pulmonary artery as they cross. It normally appears as a K or C shape. The left hilum is normally 1-2cm higher than the right.

Increased density or loss of the K shape of the hila can indicate lymphadenopathy or mass. Atelectasis can pull the hila and displace the hilar point towards the pathology.

3. What is your differential diagnoses list for a floppy baby?

There are lots of mnemonics out there. The one I grew up using is THE MISFITS

- T Trauma
- H Heart disease
- E Endocrine Congenital adrenal hyperplasia
- M Metabolic hypoglycaemia
- I Inborn errors of metabolism
- S Sepsis
- F Formula mishap
- I Intestinal malrotation
- T Toxins
- S Seizures

4. How does congenital adrenal hyperplasia present?

Congenital adrenal hyperplasia causes an acute salt losing crisis which presents between 3-5 weeks of age with non specific symptoms of altered mental status and shock. There may be skin hyperpigmentation due to increased ACTH secretion and cliteromegaly in females. Mineralocorticoid deficiency causes hyponatraemia and hyperkalaemia. Glucocorticoid deficiency causes hypoglycaemia and metabolic acidosis.

5. Describe and interpret the following blood gas analysis.

рН	6.955		Profound acidosis
pCO ₂	99.2 mmHg		Hypercarbia so there is a respiratory acidosis
			This increase of 60mmHg (from normal of 40mmHg) Would acutely increase HCO ₃ by 6mmol/L to 30mmol/L pCO2 100mmHg + HCO ₃ 30mmol/L = pH 7.1
			The pH is more acidotic than by pCO_2 99.2mmHg So there must be concurrent metabolic acidosis
HCO₃¯	19	mmol/L	This is a calculated value from pH and CO ₂ It is 11mmol/L lower than it should be (30mmol/L) Consistent with metabolic acidosis
Anion	gap		(Na 128 – Cl 90 – HCO3- 19) = 19mmol/L = HAGMA
Delta ratio			Δ AG/ Δ HCO3- = (19 – 12)/(30 – 19) = 7/11 = 0.63 HAGMA + NAGMA

Delta ratio	
<0.4	= Normal anion gap metabolic acidosis
0.4 - 1.0	= High anion gap + normal anion gap metabolic acidosis
1.0 - 2.0	= Pure high anion gap metabolic acidosis
>2.0	= High anion gap metabolic acidosis + metabolic alkalosis

pO_2	273	mmHg	Hyperoxia – on oxygen therapy
Na	128	mmol/L	Hyponatraemia Corrected for hyperglycaemia = Na 133mmol/L
К	8.0	mmol/L	Hyperkalaemia – life threatening
Lact	8.3	mmol/L	Very high, potential cause of HAGMA
Creat	632	mmol/L	Renal failure

- → Mixed respiratory and metabolic acidosis
- Metabolic acidosis is combined high anion gap and normal anion gap acidosis
 - o High anion gap ketones, lactate, uraemia, toxins could be all these
 - o Normal anion gap Renal or GIT likely renal given renal failure
- Hyperkalaemia warrants immediate treatment with calcium and bicarb
- Oxygen therapy